
Updated GameTools: Libraries for easier
advanced graphics in serious gaming

Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

Abstract Advanced graphics effects can be difficult to create and implement by
non-experts. We present here multi-platform, multi-game engine libraries, designed
to simplify the use of efficient state of the art computer graphics algorithms in the
fields of geometry and illumination. The main benefits of using these libraries are
the great improvement in graphic performance and realism and the fact that since
they use the standard graphic pipeline no changes are required in the design phase of
the games which use them. A summary of our experiences updating and porting the
libraries is included, with recommendations possibly useful to other programmers.
The main features of the updated libraries are described. Two serious games which
use the geometry libraries are presented here as use cases, both dealing with teaching
history to middle school students. Finally we show an implementation of a board
game played in Europe since Roman times (of interest to museums specialized in
medieval or Roman times) which uses the illumination libraries.

1 Introduction

A serious game is a game designed for a primary purpose other than pure entertain-
ment. As a consequence, the development team is often more centered on realistic

Rubén Garcı́a
University of Girona (Spain), e-mail: rgarcia@ima.udg.edu

Jesús Gumbau
Universitat Jaume I (Spain)e-mail: jgumbau@lsi.uji.es

László Szirmay-Kalos
Budapest University of Technology and Economics (Hungary), e-mail: szirmay@iit.bme.hu

Mateu Sbert
University of Girona (Spain)e-mail: mateu@ima.udg.edu

1

2 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

modeling of the aspects of the virtual world which are required for the teaching of
techniques which the user will later use in his professional life.

It is common that designers and programmers are experts in the application do-
main, rather than in the field of computer graphics (especially when comparing to
firms creating entertainment games).

The creation of new graphic effects is becoming increasingly complex, due to
two main reasons:

• New effects often require the use of advanced capabilities of Graphical Process-
ing Units (GPUs), which use architectures quite different from that of CPUs,
and require the knowledge of specialized languages (Cg, HLSL, glsl, CUDA)
and techniques (parallel architectures with distributed memory, specific geome-
try, vertex and pixel shaders, and different types of memory with tricky access
modes).

• These effects are becoming increasingly supported by complex physics simula-
tions, which require knowledge of methods to solve differential equations effi-
ciently.

Therefore, the existence of a general library of graphic effects and techniques,
which could be used in different projects by non-specialists in the field of computer
graphics, can be a great asset for researchers and programmers in the serious gaming
community.

The next section describes previous work on which our library is based, while
section 3 describes the new libraries’ porting procedure and implementation details.
Section 4 contains three use cases: the Jaume I, Legends of Girona and Nine Men’s
Morris games. Finally, section 5 concludes the paper.

2 GameTools

GameTools [2] was a European Union project which brought together six universi-
ties and four industrial partners during 2004-2008, and whose aim was to create a set
of graphic libraries encompassing different aspects of computer graphics: Geometry
Simplification, Global Illumination and Visibility Culling.

The libraries were meant to aid game companies who did not have a large enough
budget to maintain a specialized team in advanced computer graphics techniques.
Companies were supposed to focus on the game story, ensuring playability and user
enjoyment, while the advanced graphic effects were provided by the GameTools li-
braries. GameTools libraries were provided for the Windows platform, using Visual
Studio 2005 and DirectX 8, with support for the Ogre3D [5] game engine, version
1.0.8, and the Shark3D [6] engine.

Updated GameTools: Libraries for easier advanced graphics in serious gaming 3

2.1 Geometry libraries

To create a virtual world, one of the tasks is modeling scenarios and characters us-
ing geometric primitives, usually triangles. These (usually complex) models require
substantial processing power to render. In order to decrease computation time with-
out sacrificing quality, the geometry of far-away objects can be transformed (sim-
plified) so that the cost of rendering is significantly reduced. Since the simplified
objects occupy a small area in the screen, imperfections are difficult to distinguish
to the human eye. If the Level of Detail is changed continuously as the object moves,
the change will not be noticed by users.

The Geometry libraries contain algorithms dealing with geometry processing in
the context of continuous level of detail (CLOD). In particular, mesh simplifica-
tion [15], spherical light fields [13], tree leaves [22] [23] and mesh management [16]
are included. Error metrics taking textures into account are also used [14].

An example of the software developed to manage simplification methods can be
seen in figure 1.

Fig. 1 Continuous level of de-
tail: triangle strips for general
models; tailored algorithms
for vegetation.

2.2 Illumination libraries

Fig. 2 Approximate raytrac-
ing: realistic transparency and
caustics

The illumination libraries contain an assortment of efficient algorithms for real-
istic rendering, based on the concepts of approximate raytracing [27][26][33][19]
(figure 2), indirect illumination gathering [21][25][18][20][31] (figure 3), scattering
media simulation [32][30][29] (figure 4), and post-processing effects such as depth
of field, tone mapping [28], glow (figure 5) and image distortion caused by heat

4 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

Fig. 3 Indirect illumination
gathering (left) vs local illu-
mination model (right)

Fig. 4 Scattering media sim-
ulation: Fire and smoke.

Fig. 5 Postprocessing ex-
amples: Depth of field, tone
mapping

Fig. 6 Postprocessing exam-
ples: image distortion due to
heat

shimmering (figure 4, left, and figure 6). The effects can be used together with no
restrictions.

Updated GameTools: Libraries for easier advanced graphics in serious gaming 5

2.3 Visibility libraries

Given a scene that we wish to render, the visibility problem consists in calculating
efficiently which geometry is (at least partially) visible from a viewpoint [17]. If we
have some information about the type of scene being rendered, we can sometimes
apply specific algorithms to discard invisible geometry.

The GameTools Visibility libraries contain state-of-the-art visibility culling al-
gorithms, examples of which can be seen in figure 7.Figure 7 (left) shows an in-
teractive walkthrough of the city of Vienna which uses a Potentially Visible Set
Visibility Culling algorithm. Figure 7 (right) shows the use of Coherent Hierarchi-
cal Culling [12] to reduce the number of rendered objects rendered from the initial
2000 to only 425.

Fig. 7 Potentially Visible
Set (PVS) and Coherent
Hierarchical Culling (CHC).

3 Updated GameTools

A new project was started in 2009 to update the Geometry and Illumination routines
of GameTools to support other operating systems and gaming platforms. Since the
Ogre3D engine is multi-platform, running on Windows, Linux and OSX, it was
considered a worthy endeavor to rewrite the GameTools routines portably, using the
Ogre3D engine as a testbed to check for regressions.

Fig. 8 Structure diagram
of the Updated GameTools
libraries, and their integration
in the Unity3D and Ogre3D
engine.

Geometry

DemosGeoTool

GTGeometry

Updated Game Tools

Shaders

Illumination

LOD Manager

Render
Techniques

Metals
|

Unity3D

Scripts Materials

Rendering
Runs

|
PhotonMaps

Ogre3D

Material

Manager

Mesh

Manager

GTMaterials

Wrappers
Geometry Illumination

Wrappers

LOD Trees

LOD Strips

Caustics
Cubemaps

However, the rapid pace of development in free software projects, when com-
pared to proprietary software (and the lesser emphasis on backwards compatibility)

6 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

have forced us to follow the Ogre3D development closely and continue updating
our libraries at a fast pace. Currently, our version uses Ogre3D 1.7.3 and Unity3D
3.4. A simplified structure diagram of the routines can be seen in figure 8.

The illumination routines are divided into render techniques (materials) and
render runs (auxiliary techniques used by the render techniques). In Ogre3D and
Unity3D, materials are built using render techniques. Unity3D scripts control some
of the functionality. The geometry routines control the LOD of the models, and are
called from the material manager in Ogre3D and from Unity3D scripts.

3.1 Porting procedure and lessons learnt

The original GameTools libraries follow correct design, programming and testing
procedures, and work quite well in their supported platform. However, while up-
dating the code, we have found undocumented assumptions which introduce hidden
bugs and make porting more difficult. This section describes some of these bugs
and describes procedures which would have found most of these bugs in the early
phases of development, when they could be fixed more easily.

3.1.1 Persistent data structures

The GameTools libraries create persistent data for different purposes. For example,
the Geometry library creates and stores triangle strips and additional data to manage
the continuous level of detail (LOD) of both triangle strips and procedural trees.
The Illumination library creates and stores illumination samples and data for the
precomputed path maps.

These files contain different types of integers, floating point and boolean data,
and since the only supported platform was Visual Studio 2005 on Microsoft Win-
dows, the files were created by storing the binary data directly onto disk, and read by
transferring the data from disk into memory. No effort was spent documenting endi-
anness, size of data types, alignment padding or otherwise. The move to Windows
on 64 bit architectures was not foreseen. This means that the use of a different com-
piler (even on 32 bit Windows) would introduce bugs in file access, and complicates
the porting to Mac OSX (where the size of booleans is different), 64 bit Windows
and Linux (where the size of long is different) and tablets (where endianness is
different). See figure 9 for an example.

Fig. 9 Example of file trans-
fer between machines with
different endianness creating
corrupted data

Final Data

0x03040102=

50594050

Data corruption

0x01

0x02

0x03

0x04

Big Endian

0x01

0x02

0x03

0x04

Disk

0x03

0x04

0x01

0x02

Little Endian

16909060=

0x01020304

Original Data

Updated GameTools: Libraries for easier advanced graphics in serious gaming 7

This difficulty in porting could have been prevented if data types had been stan-
dardized in the software design phase, and if proper methods to separate memory
data structures from disk data structures had been added. We recommend adding a
variety of hardware and software platforms to the testing procedures, including big
and little endian architectures, different word sizes if possible, and different com-
pilers, even if only one platform will be eventually supported. This ensures that
non-portable code can be detected early, isolated if the effort to make it portable is
deemed too high, and that file formats are properly documented.

3.1.2 Memory access problems

Memory access problems are the most common bugs in C++ development, and
many applications have been created trying to reduce this problem, even going to
the trouble of emulating the whole processor and memory access (valgrind [8] [24]).
Despite that, mistakes in memory access remain in most programs, and are a major
fraction of crashing bugs and hacking / cracking attempts.

Our experience porting and updating the GameTools routines showed that these
programming errors can remain hidden and be difficult to fix because of two reasons.
First, the memory management code on Microsoft Windows does not reuse free
memory very aggressively, so freed memory remains ’valid’ for potentially a large
amount of time. Second, the Visual Studio 2005 implementation of the standard
template library collections in many cases does not take advantage of the fact that
references to objects in collections are not valid after a change (this would allow the
use of complex data structures to decrease computation time). Software testing does
not find any of these errors, since to the operating system, the memory is actually
valid. Again, testing on different architectures, compilers and operating systems
permits early detection and fixing of these errors at a small cost.

3.1.3 External libraries

Complex software is not created from scratch. In most cases, many already existing
libraries are reused, and care must be taken to write efficient code to interface with
them. This is especially problematic when libraries expect data in different formats,
since in many cases more time is spent translating formats than doing actual work.

However, the main problem we have encountered is that many libraries which ap-
peared to be thriving during the time frame of the original GameTools project have
been abandoned, forcing us to either use old, unmaintained versions with unpatched
security problems, or ”inherit” these libraries and update them ourselves. The prob-
lem with this last approach, of course, is that the managing of large libraries is a
big project in itself, and managing more than one can be overwhelming for small
groups.

This problem can be mitigated by identifying the supporting libraries, finding
other libraries solving similar problems, and designing an abstract interface which

8 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

can deal with different back-ends (the Model View Controller architecture is one
possible architecture). Although this is more costly than choosing only one library,
the long-term benefits usually are worth the cost. Many large libraries, therefore,
follow this approach, which we recommend. An example is OpenCV [9], which is
one dependency of our augmented reality demo.

Fig. 10 Example of run-time
or compile-time selection of
libraries in portable code

Portable

Program

Logic

Low Level

Library 3

Operating

System 3

..... Wrapper

Code <n>

Low Level

Library 1

Low Level

Library 2

Operating

System 2

Operating

System 1

Wrapper

Code 1

Interestingly, many well maintained libraries presented the opposite problem:
development was so fast that retaining compatibility with updated versions of the
libraries was much more costly than originally expected. In particular, the Ogre3D
game engine released two major versions (and eight minor versions) during the
time frame of our new project, which required updating of the interfaces between
the GameTools libraries and Ogre3D.

This last problem is quite important when using free software libraries (which
seem to have a quicker pace of development), since the support for older versions
from the development team is small, and since having access to the source code
encourages the changing of the APIs and the removal of older, less efficient APIs,
which breaks binary compatibility.

Additionally, care should be taken when choosing external libraries to preserve
the portability of the whole system. Not only should libraries advertise support for
the operating systems targeted by the software being developed, but testing pro-
cedures should be added to test this support, since in many cases, support can be
enough to create simple applications, but advanced features are not supported. For
example, although Unity3D supports both Windows / DirectX and OSX / OpenGL
platforms, the OpenGL support only supports second generation hardware, and does
not permit the use of complex, third or fourth generation shaders, even though the
underlying operating system and card supports it. As a consequence, our advanced
illumination routines cannot run on OSX Unity3D.

Another caveat worth mentioning is the licensing of these libraries. While li-
braries are chosen taking their licensing into account so that they can be bundled

Updated GameTools: Libraries for easier advanced graphics in serious gaming 9

in final products, it is sometimes the case that the licensing of the final product
changes in order to respond to marketing or other pressures. In our case, the origi-
nal GameTools libraries were created under European Union funding, and original
plans included both Open Source licenses (for initial libraries) and commercial li-
censes (for optimized code) [1]. The follow-up project was started under a Catalan
grant, and encouraged proprietary licenses.

These changes in licensing require a reassessment of all the supporting libraries,
and may require new libraries to be swapped in. Though the approach presented
above will help the transition, we cannot encourage enough contacting the copyright
holders of all used libraries beforehand and requesting their opinion on different
types of licenses (including obtaining customized licenses).

3.1.4 Portability in GPU code

We have used Nvidia’s Cg language to create portable algorithms running on GPUs.
Cg can be used from both OpenGL and DirectX, and runs on Windows, Linux and
OSX; the GPUs supported include nVidia, 3Dlabs, ATI and Matrox. Additionally,
Cg and HLSL are quite similar languages, allowing us to reuse the original HLSL
code created for the original GameTools libraries.

Nevertheless, we have encountered some small, unexpected portability problems,
which we detail here. Although Cg allows us to write portable programs, in many
cases some parts of the graphic pipeline environment implicitly affects the result.
The default values of the projection and modeling matrices, and other rendering
state, are different in DirectX and OpenGL. As a result, even simple code might
need to be either rewritten to take these values into account, or the expected value
of all the rendering states affecting the GPU code must be documented. In particu-
lar, since the handedness of OpenGL and DirectX is different, checking the z-buffer
might require changing the comparison operators. This is complicated by the fact
that Ogre3D uses an OpenGL-like environment when rendering under DirectX. Ad-
ditionally, the use of external rendering engines and libraries restricts the constructs
which can be used in the Cg code, since rendering engines may have old versions
of the Cg compiler, or use HLSL compilers with additional restrictions on the code
they accept.

We again recommend testing all available architectures from early stages of de-
velopment, when all the implementation details and decisions are still fresh in the
developers’ minds.

3.2 Supported game engines and libraries

The Updated GameTools libraries are portable, running on Linux, Windows and
Mac OSX. Supported game engines include Ogre3D and Unity3D [7], but users
may use them in conjunction with other engines or libraries. Example C-language

10 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

wrappers and different demos showing the use of the API are provided. An example
of an augmented reality demo using the Aruco [3] and OpenCV libraries is shown
in figure 11.

Fig. 11 Example augmented
reality application using
our libraries, running on
GNU/Linux and OSX, at dif-
ferent LODs

3.3 Geometry library: GTGeometry

The GTGeometry library contains different modules dealing with Continuous Level
of Detail algorithms:

• Stripification: takes a list of triangles as input and produces triangle strips suitable
for efficient rendering.

• Simplification: generate geometry or viewpoint-driven simplified meshes.
• Simplification of trees: specific algorithms for vegetation.
• Managing of LODs: Automatic calculation of optimal LODs.

The library is backwards compatible with the original GameTools geometry li-
braries, and has been ported to the Unity3D engine. The modules are described
in more detail in the following sections.

3.3.1 Stripification module: LODStrips

Fig. 12 LODStrips example,
Ogre3D, Linux, Mac OSX,
Windows.

The stripification module contains code to create efficient triangle strips from
general models. The first demo demonstrate the LodStrips multi-resolution run-time
library (Geometry::LodStripsLibrary). The application (figure 12) shows a group of
models which are able to change their level of detail depending on the distance of

Updated GameTools: Libraries for easier advanced graphics in serious gaming 11

the group of objects to the camera. The information panel on the bottom-left corner
of the screen shows the current LOD factor, frames per second and the amount of
geometry sent to the renderer. It can be seen how the frame rate increases as the
LOD decreases.

The level of detail can be calculated in two ways: automatic LOD (based on the
distance of the group to the camera) and manual LOD (the user changes the level
of detail independently from the distance), which changes the level of detail of the
objects manually. This last mode is useful to see the meshes in detail even when
their level of detail is set to the minimum.

The demo also shows how LOD operations can be minimized by grouping some
instances of the same model to be managed by a single LodStrips multi-resolution
model. This is useful when some models need similar levels of detail and will im-
prove the overall performance.

3.3.2 Continuous LOD Managing module: LODManager

Fig. 13 LODManager ex-
ample, Ogre3D, Mac OSX,
Windows.

The LodManager demo features a massively populated scene composed of 1 200
models. Each one of them is attached to an independent multi-resolution model
instance that manages its level of detail. To manage the level of detail of such a vast
scene, we introduce the use of the LodManager, which decides whether an object
can change its level of detail freely or just has to borrow an already calculated LOD
snapshot.

The demo allows the user to enable or disable the LodManager capabilities to
show the difference in performance. The LodManager is able to keep the bottle-
neck of the application in the graphics engine and not in the LOD calculations. A
screenshot can be seen in figure 13.

3.3.3 Continuous LOD for vegetation: LODTrees

This demo presents Geometry::LodTreeLibrary, the LodTrees multi-resolution run-
time library. The demo is composed of some groups of multi-resolution trees. The
LOD of each group, composed by some trees of the same type, is managed by a
single LodTree instance to optimize performance. The result is a forest of multi-

12 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

resolution trees which change its level of detail depending on the distance to the
camera of each one of these groups.

The geometry of the trees in our demo is provided by the Xfrog software [11],
but the LODTrees module itself can use geometry from other sources. Figure 14
shows an image of the LodTrees demo.

Fig. 14 LODTrees example,
Ogre3D, GNU/Linux and
Mac OSX.

3.3.4 Geometry management application: GeoTool

Fig. 15 GeoTool application,
GNU/Linux and Mac OSX.

GeoTool is an application which eases the creation of the LOD models. It uses
the FLTK [4] toolkit to ensure portability among the three supported architectures.
Its main features include simple operations such as triangle stripification, mesh sim-
plification (geometry or viewpoint based), leaves simplification, and complex oper-
ations (e.g. LODStrip and LODTrees creation and visualization). A screenshot of
the software can be seen in figure 15.

3.3.5 GTGeometry in Unity3D

Unity3D Pro allows native C code to be called from within its scripts. To use GTGe-
ometry within Unity3D, C wrapper routines can be used. An example of a LODTree
controlled within Unity3d can be seen in figure 16.

Updated GameTools: Libraries for easier advanced graphics in serious gaming 13

Fig. 16 Continuous LOD
Tree in Unity3D, Mac OSX
and Windows, at a LOD of
30% (left) and 100% (right).

3.4 Illumination library: GTIllumination

The GTIllumination library contains different global illumination effects, imple-
mented efficiently using GPU programming. Effects include realistic metals and
glass, caustics, particle systems, hierarchical systems, tone mapping, precomputed
radiance maps, multiple reflections and refractions and various screen space ambi-
ent occlusion algorithms. Figures 17 to 20 show screenshots of the different effects.

Fig. 17 Realistic metals
and glass, caustics, particle
systems, hierarchical systems.

Fig. 18 Precomputed Radi-
ance Maps, Soft Shadows,
Glowing effect and Illumina-
tion Networks

14 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

Fig. 19 Tone Mapping and
eye adaptation.

Fig. 20 Screen Space Am-
bient Occlusion: Classic,
Crytek, Volumetric and Volu-
metric with Color Bleeding.

The software package contains GPU shaders used to implement the different ma-
terials and effects. Interfacing packages have been created for Ogre3D and Unity3D
in order to make the effects easy to use in these engines. The work flow is similar
to using predefined materials and effects. Ogre3D’s materials and techniques can
be defined in material scripts with the use of keywords, and a Unity3D package is
provided to add the new functionality, so that drag-and-drop can be used to indicate
techniques and materials.

Scripts and prefabs are provided to link the different techniques to the relevant
Unity3D objects; the only caveat is that since the (color and distance) cubemap tex-
tures required to calculate accurate reflections are included in the material, each ob-
ject should have its own instance of the material (the material can be shared among
nearby objects but the quality of the picture will be affected, since objects sharing
materials will not be reflected on each other). Figure 21 shows an example of the
Unity3D package in action. The material for the skull object is a realistic gold, and
its parameters and textures are updated in real time by a child CCM prefab con-
taining the scripts and cameras required to update the color and distance cubemaps
and other parameters. Additional scripts (not shown) are attached to the camera to
ensure correct image generation.

Figure 22 shows examples of metal materials on the windows platform. The ef-
fects have been confirmed to work in Linux and Mac OSX using the windows emu-
lator Wine [10] (see figures 23 and 24), so we are confident that our routines will be
available in Unity3D on the Mac platform as soon as Unity3D updates their OpenGL
support, and on the Linux platform when Unity3D adds support for the platform in
the near future.

Updated GameTools: Libraries for easier advanced graphics in serious gaming 15

Fig. 21 GameTools Illumina-
tion effects in Unity3D

Fig. 22 Realistic gold, silver,
copper and aluminium metals,
ideal metal and glass in the
Unity3D engine (Windows)

Fig. 23 Realistic gold, silver,
copper and aluminium metals;
ideal metal and glass in the
Unity3D engine (Linux +
Wine)

Fig. 24 Realistic gold, silver,
copper and aluminium metals
in the Unity3D engine (Mac
OSX + Wine)

4 Use cases

The Updated GameTools libraries have been used in two serious games created
with the Unity3D engine. These games have been designed in collaboration with
the Faculty of Arts and the Faculty of Education of the University of Girona, and

16 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

they are to be used to help teaching local history to middle school students. An
agile software development methodology has been followed to create these games.
Preliminary testing with end users has been carried out, and more widespread tests
are planned for the near future.

The first game is called Jaume I and simulates the conquest of Mallorca by James
I the Conqueror in 1229. The second game is Legends of Girona. The Legends
of Girona game explores the different legends concerning the city of Girona. In
particular, the legend of the miracle of Saint Narcis, who repelled the siege of Girona
in 1285, has been implemented. The objective of these two games is to provide an
enjoyable way to study the history of the kingdom of Aragon in the middle ages
(Jaume I) and specifically the history of the city of Girona (Legends).

The third use case is not strictly a serious game, but a computer version of a
board game called Nine Men’s Morris (and its more common variants). However,
since this game has been played since Roman times and was very popular in me-
dieval times across most of Europe, it is of interest for interactive museum exhibits
dealing with Roman or medieval times. Because of this, we may consider it a serious
game in the context of cultural heritage. The objective of this game is to familiarize
museum visitors with the different variants of this milenary board game, and the
materials commonly used during Roman and medieval times. This game has been
designed using a classical iterative development model, and informal testing has
been carried out during the development of the game.

No changes in the design of the games were required to integrate the updated
gametools effects. Drag and drop was used to indicate the position of the CLOD
trees and the realistic materials.

4.1 Jaume I: The battle of Portopı́

Jaume I, a strategy game, reproduces a historical battle in 13th century, with archery,
infantry and cavalry, won by king of Aragon Jaume I which led him to conquer Mal-
lorca. The game has been developed in collaboration with the Faculty of Arts of the
University of Girona, and tries to reproduce the historical characters and skirmish
situations. Successful players will develop mastery of the history of the Aragon
kingdom before unification with the Castilian kingdom to form Spain.

Figure 25 shows a continuous level of detail tree created using the GTGeometry
libraries at the beginning of the game.

Fig. 25 Screenshots of the
Jaume I serious game, includ-
ing a procedural tree from
GTGeometry at different
LODs.

Updated GameTools: Libraries for easier advanced graphics in serious gaming 17

4.2 Legends of Girona

Legends of Girona is a first/third person educational game developed together in
collaboration with the Faculty of Education of the University of Girona. The game
simulates a legendary happening in the town during a foreign invasion in the 13th
century. The successful player develops mastery of the history of the town of Girona
and its ancient urban and geographical disposition through navigating and exploring
game artefacts without being captured. Eventually the player needs to find a way out
of a labyrinth in an old church crypt.

Figure 26 (left) shows a screenshot of the game with a tree showing simplified
geometry. When the user crosses the bridge, the tree geometry is refined smoothly in
real time using the continuous level of detail routines from our libraries. Figure 26
(right) shows another screenshot, which displays a gold key with realistic reflections
in real time.

Fig. 26 Screenshots of the
Legends of Girona serious
game, including a procedural
tree from GTGeometry and
a realistic gold key from
GTIllumination, running on
Mac OSX and Windows.

4.3 Nine Men’s Morris

Nine Men’s Morris is a traditional board game similar to Tic-Tac-Toe. While not
strictly a serious game, we are interested in including this game (and its many vari-
ants) in interactive museum displays in the United Kingdom and Northern Europe,
because this game was very popular there in medieval times.

We have implemented different variants of the Nine Men’s Morris strategy game,
and included an artificial intelligence opponent. We have used the realistic copper
and glass materials from the GTIllumination libraries to distinguish the two players,
and a wood material for the board. These materials have been used since ancient
times for board games, and we expect the increased realism provided by our routines
to help set the scenario in museum exhibits. Figure 27 shows a screenshot of the
game; notice the multiple inter-reflections and refractions visible in the marbles’
surfaces.

18 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

Fig. 27 Screenshots of the
Nine Men’s Morris game,
including realistic cooper
and glass materials from
GTIllumination, running in
Windows.

5 Conclusions and future work

We have presented in this paper a description of the Updated GameTools Libraries,
showing how they can be used to create advanced graphic effects in popular game
engines. Users of the routines are not expected to have in-depth knowledge of
graphic algorithms, and this makes the routines especially suited for inclusion in se-
rious games created by programmers with backgrounds other than computer graph-
ics. The main advantage of the routines is that they can be used to increase the
performance or realism of serious games without requiring changes in the design of
the games. Three use cases are provided: the games Jaume I, Legends of Girona and
Nine Men’s Morris.

Our plans for future work include adding a Visibility Culling module to our rou-
tines, adding more game engines and platforms (including popular consoles such
as Microsoft Xbox, Nintendo Wii and Sony PlayStation), and adding more ad-
vanced effects (other simplification and LOD techniques, more realistic shadows,
other screen space ambient occlusion and / or global illumination algorithms), in
collaboration with academia.

Acknowledgements This work has been supported by the research projects coded TIN2010-
21089-C03-01 and IPT-2011-0885-430000 (Spanish Commission for Science and Technology)
and by grants VALTEC09-2-0118 and 2009SGR643 (Catalan Government).

Updated GameTools: Libraries for easier advanced graphics in serious gaming 19

References

[1] (2008) GameTools Project Newsletter. ”http://www.gametools.org/
downloads/GTP newsletter3.pdf”, accessed 20 January 2012

[2] (2008) GTP. ”http://www.gametools.org/”, accessed 20 January
2012

[3] (2012) ArUco: a minimal library for Augmented Reality applications based on
OpenCv. ”http://www.uco.es/investiga/grupos/ava/node/
26”, accessed 23 January 2012

[4] (2012) Fast Light Toolkit (FLTK). ”http://www.fltk.org/”, accessed
23 January 2012

[5] (2012) OGRE - Open Source 3D Graphics Engine. ”http://www.
ogre3d.org/”, accessed 20 January 2012

[6] (2012) Shark 3DTMby Spinor GmbH. ”http://www.spinor.com/”, ac-
cessed 20 January 2012

[7] (2012) Unity: Game development tool. ”http://unity3d.com/
unity/”, accessed 20 January 2012

[8] (2012) Valgrind Home. ”http://valgrind.org/”, accessed 23 January
2012

[9] (2012) Welcome - OpenCV wiki. ”http://opencv.willowgarage.
com/wiki/”, accessed 23 January 2012

[10] (2012) WineHQ - Run Windows applications on Linux, BSD, Solaris and Mac
OS X. ”http://www.winehq.org/”, accessed 29 February 2012

[11] (2012) Xfrog - News. ”http://xfrog.com/”, accessed 23 January 2012
[12] Bittner J, Wimmer M, Piringer H, Purgathofer W (2004) Coherent hi-

erarchical culling: Hardware occlusion queries made useful. URL
http://www.cg.tuwien.ac.at/research/publications/
2004/Bittner-2004-CHC/, proceedings EUROGRAPHICS 2004

[13] Domingo A, Escriva M, Abad F, Lluch J, Camahort E, Vivo R (2007)
Continuous lods and adaptive frame-rate control for spherical light fields.
Geometric Modeling and Imaging–New Trends pp 73–78, DOI http://doi.
ieeecomputersociety.org/10.1109/GMAI.2007.14

[14] González C, Castelló P, Chover M (2007) A texture-based metric extension
for simplification methods. In: Braz J, Vázquez PP, Pereira JM (eds) GRAPP
(GM/R), INSTICC - Institute for Systems and Technologies of Information,
Control and Communication, pp 69–76

[15] González C, Gumbau J, Chover M, Castell P (2007) Simplificacin de mallas
para juegos. In: CEIG 2007 Congreso Espaol de Informática Gráfica, Euro-
graphics Association, vol 1

[16] Gumbau J, Ripolles O, Chover M (2007) Lodmanager: A framework for ren-
dering multiresolution models in real-time applications. In: WSCG’2007 Short
Communications Papers Proceedings, pp 39–46

[17] Hadwiger M, Varga A (1999) Visibility culling
[18] Kalos LS, Lazányi I (2006) Indirect diffuse and glossy illumination on the gpu.

In: SCCG 2006, pp 29–35

20 Rubén Garcı́a, Jesús Gumbau, László Szirmay-Kalos and Mateu Sbert

[19] Lazányi I, Szirmay-Kalos L (2005) Fresnel term approximations for metals.
In: WSCG 2005, Short Papers, pp 77–80

[20] Lazányi I, Szirmay-Kalos L (2006) Indirect diffuse and glossy illumination
on the gpu. In: Engel W (ed) ShaderX5: Advanced Rendering Techniques,
Charles River Media, pp 345–358

[21] Mendez A, Sbert M, Cata J, Sunyer N, Funtane S (2005) Real-time obscu-
rances with color bleeding. In: Engel W (ed) ShaderX4: Advanced Rendering
Techniques, Charles River Media

[22] Rebollo C, Gumbau J, Ripolles O, Chover M, Remolar I (2007) Fast ren-
dering of leaves. In: Proceedings of the Ninth IASTED International Con-
ference on Computer Graphics and Imaging, ACTA Press, Anaheim, CA,
USA, CGIM ’07, pp 46–53, URL http://dl.acm.org/citation.
cfm?id=1710707.1710717

[23] Rebollo C, Remolar I, Chover M, Gumbau J, Ripolles O (2007) A cluster-
ing framework for real-time rendering of tree foliage. Journal of Computers
2(4):57–67

[24] Seward J, Nethercote N (2005) Using valgrind to detect undefined value er-
rors with bit-precision. In: Proceedings of the annual conference on USENIX
Annual Technical Conference, USENIX Association, Berkeley, CA, USA,
ATEC ’05, pp 2–2, URL http://dl.acm.org/citation.cfm?id=
1247360.1247362

[25] Szécsi L, Szirmay-Kalos L, Sbert M (2006) Light animation with precomputed
light paths on the gpu. In: GI ’06: Proceedings of Graphics Interface 2006,
Canadian Information Processing Society, Toronto, Ont., Canada, Canada, pp
187–194

[26] Szirmay-Kalos L, Aszódi B, Lazányi (2005) Ray-tracing effects without trac-
ing rays. In: Engel W (ed) ShaderX4: Lighting & Rendering, Charles River
Media

[27] Szirmay-Kalos L, Aszódi B, Lazányi I, Mátyás P (2005) Approximate ray-
tracing on the GPU with distance impostors. Computer Graphics Forum
24(3):695–704

[28] Tóth B, Szirmay-Kalos L (2007) Fast filtering and tone mapping using impor-
tance sampling. In: WSCG 2007, Short Papers, pp 47–52

[29] Umenhoffer T, Szirmay-Kalos L (2005) Real-time rendering of cloudy natural
phenomena with hierarchical depth impostors. In: Eurographics Conference.
Short papers.

[30] Umenhoffer T, Szirmay-Kalos L (2006) Spherical billboards for rendering vol-
umetric data. In: Engel W (ed) ShaderX5: Advanced Rendering Techniques,
Charles River Media, pp 275–286

[31] Umenhoffer T, Szirmay-Kalos L (2007) Robust diffuse final gathering on the
gpu. In: WSCG 2007, Full Papers, pp 121–128

[32] Umenhoffer T, Szirmay-Kalos L, Szijártó G (2006) Spherical billboards and
their application to rendering explosions. In: GI 2006 Proceedings

[33] Umenhoffer T, Patow G, Szirmay-Kalos L (2007) Robust multiple specular
reflections and refractions. In: Nguyen H (ed) GPU Gems 3, Addison Wesley

