

NOVEL MATERIALS DISCOVERY

Creation of 360° videos from volumetric datasets

Use cases: Excitons in lithium fluoride Adsorption of carbon dioxide on calcium oxide

Rubén Jesús García-Hernández (LRZ)

SuperMUC Status and Results Workshop 2018 Garching, Germany. July 25, 2018

Introduction to NOMAD

NOVEL MATERIALS DISCOVERY

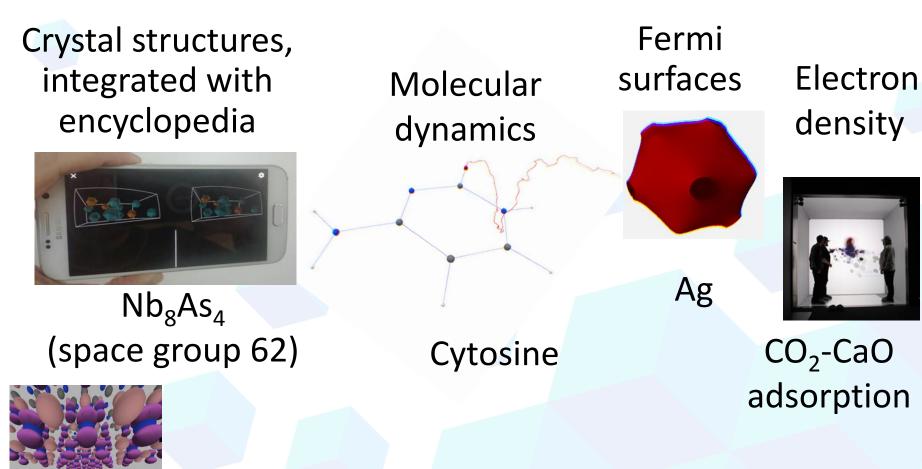
Field: Materials Science

Exploring chemical reactions to discover optimal materials for given usecases and new properties of existing materials

NOMAD Overview

NOMAD Repository: largest collection of materials science simulations

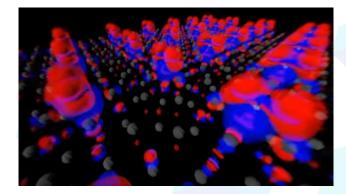
- Code-independent view (archive)
- Material-centric property view (encyclopedia)
- Machine learning to discover new properties and descriptors (big-data analytics)
- Advanced graphics for interactive data exploration
- VR technology allows a view into the nanoscale



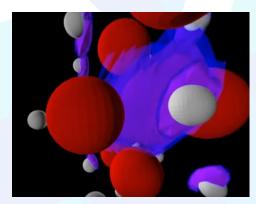
Virtual Reality: General viewer

NOVEL MATERIALS DISCOVERY

Excitons, graphene-BN heterostructures


Excitons: electron-hole pairs

$$\phi_{\lambda}(\mathbf{r}_{e},\mathbf{r}_{h}) = \sum_{cv} A_{\lambda}^{cv} \psi_{c}(\mathbf{r}_{e}) \ \psi_{v}(\mathbf{r}_{h})$$
$$\phi_{\lambda}(\mathbf{r}_{e},\mathbf{r}_{h})$$



Example datasets for Outreach: video creation

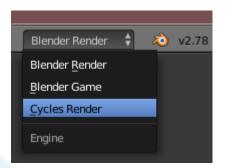
- Two example chemical systems chosen:
 - Adsorption of CO₂ on CaO surface
 - 4D dataset, time evolution of electron density <u>https://youtu.be/zHIS_8PwYYs</u>

- Electron-hole (exciton) interaction in LiF
 - 6D dataset <u>https://youtu.be/XPPDeeP1coM</u>
- Use of the pipeline for virtual reality preprocessing to generate stereo, panoramic videos

MATERIALS DISCOVERY

- We use Blender with the cycles renderer, which has support for creation of 360° panoramas
- Isosurfaces (ply) can be imported directly
- Atoms in xyz format can be imported by using an external plugin https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-Export/XYZ (alternative, export to vrml using paraview or other software)
- Python scripting can be used to load the scene, setup the camera and render frames
- Use e.g. ffmpeg to prepare the video

NOVEL MATERIALS DISCOVERY


Things to take into account:

- Cycles is physically based -> new material definitions
- High resolution required: 8k or 16k
 - 8k for visualization in VR devices
 - 16k for upload to youtube, because of the zoom control
 - This means: high memory and cpu requirements for video generation
- High quality rendering in the raytracing parameters to avoid flickering (samples per pixel)

NOVEL MATERIALS DISCOVERY

Enabling Cycles

Use	No	des	for	ph	ys	ica	lly
			b	ase	d	BRI	DF

🔚 🕄 🖏 🚼 🕥 🖉 🖉 🖉 🖉	
🔊 🎖 + 🛛 Cube 🔸 🅑 Material	
● Material	↓
😔 🛊 Material F 🕂 🔀 Data	¢
Custom Properties	
► Preview	
▼ Surface	::::
Use Nodes	

Example

Change the camera Lens to Panoramic Type: Equirectangular

⊝—🐉 Scene						
🕀 🕗 Rend	erLayers	। 🕗				
🕝 World						
e 🤗 Came			<	9	R	61
	Camera					
●————————————————————————————————————						6
🔶 💡 Lamp	5 T 🔀		•	2	R	6
			_			
			_	_	_	
📑 🕈 🗖 🖉	S 🕄 I	ି ଚ	8 8		?	1
🖈 🌗 😡 Camera 🔸 😤 Camera						
Ar Or / Ucamera / Seg Camera						
Camera F						
Culler I						
▼ Lens						
		_				_
Perspective	Orthogra	aphic	Pano	rar	nic	
Type:	Equired	tangu:	ar			÷
Min Latitud:	90° 🖹 (< Min	Longi:-	18	0°	P
Max Latitud:	90° 🕨	 Max 	: Longi:	18	0°	Þ
Shift:		Clippi	ng:			
	000 🖻 (ng: t: C).1	00	Þ

NOVEL MATERIALS DISCOVERY

Resolution and aspect ratio

Stereo Stereo3D, top-bottom

· 〓\$ 🛅 型 🐨 ❸ ● ● ∕ ⁄ ∨ ● 🛛 👯 🗸	🔚 🕄 🛇 📦 🗞 🕵 📴 🗱	
🔊 😺 Scene	📌 😺 Scene	🔊 🖏 Scene
► Render		► Render
▼ Dimensions	RenderLayer	► Dimensions ·····
Render Presets 💠 🕂 🗖	• = ⊠	► Metadata ::::
		▼ Output
Resolution: Frame Range: (X: 2048 px) (Start Frame: 0)	► Layer	/tmp\
X: 2048 px Start Frame: 0 4 Y: 2048 px 4 End Frame: 4713	► Passes ·····	✓ Overwrite ✓ File Extensions
100% Frame Step: 1 >	Views 📖	Placeholders Cache Result
Aspect Ratio: Frame Rate:	Stereo 3D Multi-View	BW RGB RGBA
	🕼 left	Color Depth: 8 16
Y: 1.000 Time Remapping:	i right	Compression: 15%
Border Crop (Old: 100 > New: 100 >		Views Format:
▼ Sampling		Individual Stereo 3D
Sampling Presets	÷ 🕂 📼	Stereo Mode: Top-Bottom
		Squeezed Frame
Path Tracing \$	Square Samples	
	Samples:	
	Preview: 32 >	
Samples Clamp Indirect: 0.00 >		
Light Sampling T: 0.00		
Pattern: Sobol	÷	

Highlights of the Python scripts

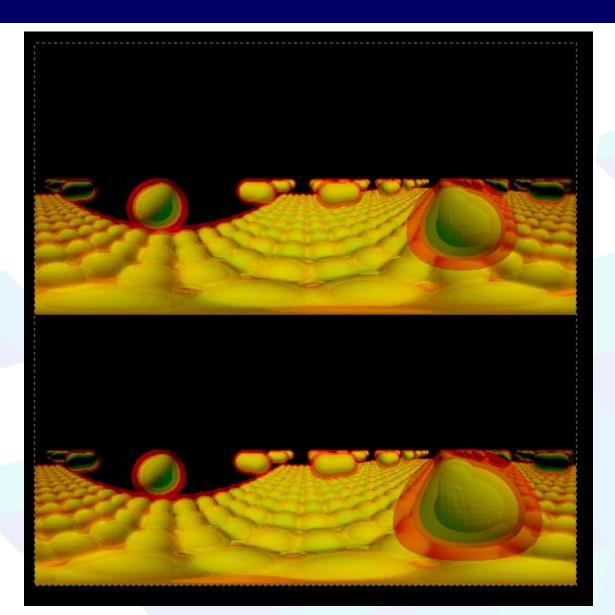
NOVEL MATERIALS DISCOVERY

- Loading, cloning, transform, render, save
- import bpy
- matISO1=bpy.data.materials.get("ISO0001")

loop through frames

- camera.location=(...)
- bpy.ops.import_mesh.ply(filepath=string)

Cleanup


for o in bpy.data.objects:
 if (o.type=='MESH'):
 scn.objects.unlink(o)
 o.user_clear()
 bpy.data.objects.
 remove(o)

- bpy.context.scene.objects.active.data.materials.append(mat)
- M=bpy.data.objects.new("atom %d %d" %(i,j), MBase.data.copy()) scn.objects.link(M); scn.update()
- M.location=...; M.scale=...; M.parent=...;
- bpy.data.scenes["Scene"].render.filepath=OUTPUTPATH % time
- bpy.ops.render.render(write_still=True)

NOVEL MATERIALS DISCOVERY

Resulting frame:

NOVEL MATERIALS DISCOVERY

Various scenes and audio tracks can be combined to create the final video

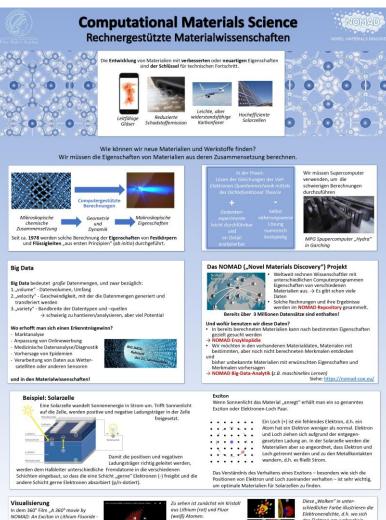
Video-editing panel of Blender

	0	
	Cross.001 393	
rec_01.MP3: Y\v2t\m rec_02.MP3: Y\v2t\media\v rec_03a.MP3: Y\v2 rec_03b.M	MP3: Y\v2t\media\videos\2017-0 rec_03c.MP3: Y\v2t\media\videos\20	rec_04.MP3: Y\v2t\media\videos\2017- rec_05.MP3: Y\v2t\media\videos\2 rec_06.MP3: Y\v2
Cross.002 423	S5B.mp4: Y\v2t\med S6.mp4: Y\v2	ttymedia\ 57.mp4: Y\v2tiymedia\ 58.mp4: Y\v2tiymedia\ 58.001: Y\v2tiymedia\v
S1.mp4: Y\v2t\media\		
New2. S2A002: Ytv2t/mediat S2A001: Ytv2t/mediat S3hq.mp4: Ytv2t/mediat	2tymedi S4hq.mp4: Y\v2tymedi	
2:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55 01:00 01:05 0)1:10 01:15 01:20 01:25 01:30 01:35 01:40 01:45 01:50 01:55 0	02:00 02:05 02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50 02:55 03:00 03:05 03

Rendering in SuperMUC

- Raytracing is an expensive algorithm, especially at the resolutions and quality settings required for 360° video
- Each frame can be calculated independently, so parallel batch jobs can be used to calculate multiple frames simultaneously.
- Since each frame may take a different time, CPU use is maximized by calculating various consecutive frames in each blender instance
- Cycles was added in a relatively recent version of blender, so proot can be used to run the newest version within a suitable environment

SuperMUC resources used


- LRZ Linux Cluster and SuperMUC were used to render parts of the movies.
- Each frame takes about 7 hours of wall processing time on the 24 core machines (i.e. 168 CPU hours / frame).
- 941 frames rendered.
- Total = 158088 CPU-hours

Example usecase: Long Night of Science

NOVEL MATERIALS DISCOVERY

- Immersive exciton visualization
- Showcased during the Long Night of Science in Berlin, at the Fritz-Haber-Institut der Max-Planck-Gesellschaft
- Youtube + Google Cardboard
- A 360° movie by NOMAD: An Exciton in Lithium Fluoride – Where is the electron?

https://www.voutube.com/user/fhitheory

Exziton im Kristall, Nachdem wi den Kristall näher zoomen und die meisten Atome ausblenden, sehen wir kleine gelbe Wolken.

Es hat eine Anregung statt ge

unden, d.h. es befindet sich ein

das Elektron am wahrscheinlichsten aufhält. Im Laufe des Films wird die Position des Loch verändert – und dadurch ändert sich auch die Elektronen-

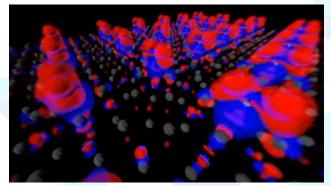
- dom 260* 10de

verteilung. So lernen wir das Exziton besser zu verstehen

Acknowledgements

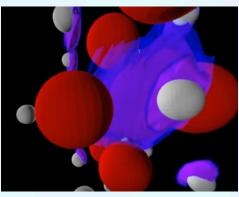
The project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 676580 with The Novel Materials Discovery (NOMAD) Laboratory, a European Center of Excellence.

The NOMAD team provided datasets, suggestions and insights.


360° Video Demo & Questions

NOVEL MATERIALS DISCOVERY

Adsorption of CO₂ on CaO surface


https://youtu.be/zHIS_8PwYYs

Electron-hole (exciton) interaction in LiF

https://youtu.be/XPPDeeP1coM

NOVEL MATERIALS DISCOVERY

Stereoscopic video creation

(Stereoscopic) video creation

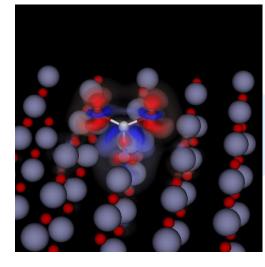
- The HTC Vive allows creation of monoscopic or stereoscopic videos.
- Procedure:
 - Indicate in the config file if monoscopic or stereoscopic is desired
 - Press the menu button to start/stop the recording of screenshots
 - Use e.g. ffmpeg to prepare the video

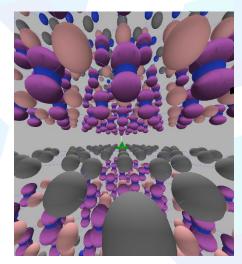
(Stereoscopic) video creation

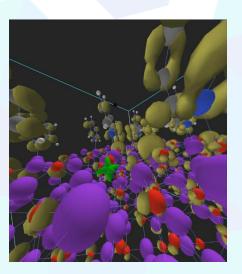
- The NOMAD Remote Visualization can also be used to create stereoscopic videos.
- Procedure:
 - Create the scene you want to display using Vislt GUI/CLI
 - Select the "Stereo" option in the "Set save options" → "Format options" tab. This will render each scene twice: once for the left eye, one for the right eye.
 - Merge each set of frames individually, creating 2 movies, one for each eye.
 - Arrange the movies in a side-by-side frame for visualization by stereoscopic-enabled devices.

(Stereoscopic) video creation

NOVEL MATERIALS DISCOVERY


• Examples (MPCDF, HUB):


<u>https://youtu.be/1ytS7n2IIqw</u> <u>https://www.youtube.com/watch?v=tQrAPuFpFh8</u>


https://www.youtube.com/watch?v=2c0mQp6RYXA

 CO_2 @CaO adsorption

graphene/BN heterostructure excitons pyridine@zinc oxide

