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Abstract

In this paper we propose to create virtual glades of flowers using
kinect gestures. The user gestures are read and reinterpreted by the
kinect interface. Once the gesture is made, and a correspondence
to the parameter space of the flower model is done, it is transmit-
ted to a web server which contains a 3Gmap L-system application.
3Gmap L-systems (an extension of L-Systems) are based on three-
dimensional generalized maps, and have been successfully applied
to the modeling of flowering plants. The 3Gmap L-system receives
the command to create or modify the flower and returns the 3D
model which will be read and visualised by the Unity game engine.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

Keywords: 3Gmaps L-System, Kinect, flower modeling, grammar
generation, natural phenomena

1 Introduction

Virtual worlds in videogames have grown in size and complexity as
computers increased in performance. The creation of these worlds
requires many hours by expensive modellers to provide a believable
experience to the final user. As technology advanced, more tools
have been provided to modellers to ease their work. For example,
interactive terrain editors allow the modeller to paint over a terrain
texture, and the colours of this texture are used by the game engine
to add trees or other vegetation, using a predefined set of models.
While the results are quite good for casual walkthroughs through
the terrain, closer inspection shows that only a discrete number of
models are being used to populate the terrain. In our framework, the
models are located in the terrain using similar techniques, but each
model instance is requested to a flower server. Since the flower
models are parametrized using a customizable grammar with dif-
ferent tunable parameters, we can guarantee that all the flowers will
be different, providing the flnal user with a much more believable
world even when performing close inspections of the models. The

grammar model ensures that all the flowers are physically plausi-
ble. Figure 8 provides an example. In order to create a flower we
are using a 3GmapLsystem [Terraz et al. 2009]. Here the L-systems
operate with subdivision of volumes, namely 3Gmaps [Frijters and
Lindenmayer 1976], [Lienhardt 1994]. The used L-systems gram-
mars have a nested structure allowing combining several grammars
which represent the different flower organs. Although this tech-
nique can provide impressive results, the underlying algorithms are
not so intuitive for common users. In order to lighten the task of
the user we combine 3Gmap L-system with the natural user inter-
face by means of Microsoft Kinect. Analyzing the gestures of the
user, Kinect provides basic interactions, which are reinterpreted as
signals for changing parameter values of the grammar, and which
in its turn returns a modified geometrical model of the flower. Us-
ing simple gestures the user can create new flowers or interactively
modify its shape, such as the curvature, the length and the width of
each of its organs.

2 Previous work

The origins of plant modeling and flowers in particular are traced
back to Aristid Lindermayer who proposed a formal description of
plant development as a string rewriting mechanism, known as L-
system, which has a recursive nature and leads to a self-similarity in
plants. Since then it has been expanded into a very efficient mech-
anism, which is applied in modeling of growth processes of plant
development [Prusinkiewicz and Lindenmayer 1990], [Federl and
Prusinkiewicz 1999], [Peiyu et al. 2006].

Although string L-systems are quite efficient and are applied
to model a wide variety of plants [Prusinkiewicz 2004],
[Prusinkiewicz et al. 1995], they are of one-topological dimen-
sion, even if 3D geometrical features are incorporated into a model.
Many shapes in nature can only be described by two or three
topological dimensions (for example, leaves, petals, pistils and
stamens). Thus, Prusinkiewicz and Lindenmayer described in
[Prusinkiewicz and Lindenmayer 1990] map L-systems and cell-
work L-systems which were mainly used for modeling of cellular
layers. These methods provide quite realistic results. However, it is
quite difficult to specify L-system grammar and there is not enough
control over the generated topologies. In [Peyrat et al. 2008], [Ter-
raz et al. 2009] 2Gmap and 3Gmap L-systems address the limita-
tions of previously described methods. These approaches are ap-
plied to model realistic leaves and wood. 2Gmap and 3Gmap L-
Systems are based on two and three-dimensional generalized maps
[Lienhardt 1994], which could be controlled by the operations asso-
ciated with production rules. The direct use of high level operations
on surfaces and volumes simplifies model specification and the use
of adjacency relations between volumes allows context-dependent
behaviors.

Still, the L-systems specification is not so intuitive for the com-
mon user, so other methods have also found its niche in the plant
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Figure 1: Traditional interface for flower modelling based on
mouse interaction

modeling area. Sketch-Based modeling techniques allow a user to
easily create a rough model from several strokes. The work of [Ijiri
et al. 2006] is an interactive modelling system for flower composi-
tion that supports seamless transformation from an initial sketch to
a detailed 3D model. Here the task of the user is quite easier and
takes less time, but still we cannot reckon on creating the models
with quite complicated structures with botanical correctness, nei-
ther cannot consider the obtained model as a sample for creating
the huge diversity of individuals.

Taking into account the benefits of the previous approaches some
methods were proposed, such as [Onishi et al. 2006], [Power et al.
1999], [McCormack 1993]. Here the L-systems are mixed with in-
teractive methods, such as Sketch-based or 3D gesture modeling or
simply interactive control of parameter values. In [Petrenko et al.
2011]] and [Petrenko et al. 2012] 3Gmap Lsystem was combined
with interactive tools, where the user could adjust the flower shape
by interactively changing the parameter values (see figure 1).

To hide the complexity of the L-systems from the final users, we
can map the different parameters to different gestures using a Mi-
crosoft Kinect [Microsoft 2012]. A Kinect, originally intended for
the Xbox 360 game, is a webcam-style add-on peripheral designed
to support the most natural ways of communication with the com-
puter: gesture recognition or spoken commands (often referred to as
natural user interface). It is both equipped with a color camera and
an infrared projector extended with a sensor providing depth infor-
mation, turning the Kinect into a low-cost, real-time full body 3D
motion capture device. According to the documentation, two skele-
tons, and up to 6 people within its field of view can be detected.
For a single skeleton, 20 joints can be used in standing posture and
10 joints while sitting. By analyzing the gestures and poses of the
user, Kinect can provide basic interactions similar to mouse, key-
board and touch interactions (i.e. selecting buttons, zooming and
panning around a surface). Kinect control has been successfully
applied to many different areas, such as computer games and enter-
tainment, education or healthcare. The creation of intuitive gestures
allows the user to control a large quantity of parameters seamlessly.
In addition, Kinects have been used to directly measure vegetation
structure [Azzari et al. 2013], to track plant leaves [IRII 2011], and
to segment them [Marcus et al. 2011].

3 Flower generation using Kinect

In the following sections, we describe the architecture of our sys-
tem, with special enphasis on the flower generation module, the

content generation module and the natural interface module.

3.1 System architecture

Figure 2: Pipeline of our framework.

The architecture of our system is as follows (Figure 2):

• A command line flower generator reads the grammar and ap-
plies the requested transformations to create a unique flower,
and generates an OBJ file using the libraries developed to sup-
port the system presented in [Petrenko et al. 2012].

• A webserver using Common Gateway Interface (CGI) pro-
vides the interface between the flower generator and the
clients requiring the flowers (figure 3). A unique url provides
the information of the base grammar, the depth and the differ-
ent values of the parameter space. Accessing the url produces
the corresponding OBJ file.

• A library of routines running in the Unity game engine [Unity
Technologies 2013] can be used to load either a specific flower
or to generate flowerbeds (figures 8 and 9). The flowerbeds

#!/bin/bash
echo Content-type: text/plain
echo
saveIFS=$IFS
IFS=’=&’
parm=($QUERY_STRING)
IFS=$saveIFS
./CL3Gmap ${parm[0]} ${parm[1]} ${parm[2]}
${parm[3]} ${parm[4]} ${parm[5]} ${parm[6]}
${parm[7]} ${parm[8]} ${parm[9]}
${parm[10]} ${parm[11]} ${parm[12]}
${parm[13]} ${parm[14]} ${parm[15]}
${parm[16]} ${parm[17]} \

2>&1 >/dev/null ||
echo "Error running CL3Gmap"

cat export/out.obj
rm -f export/out.obj

Figure 3: CGI script to interface with the flower generator.



can be parametrized setting the minimum and maximum val-
ues of the different flower parameters, and each flower is gen-
erated by sampling uniformly in the desired parameter space.
The url for the flower is used to retrieve the OBJ file with the
flower model. The number of flowers and their density can
also chosen by the user.

• We have build a library of gestures on top of the standard
OpenNI unity sdk [Zigfu 2013] and the NITE middleware,
which is described in [Rodrı́guez et al. 2013]. The intensity
of these gestures has been mapped into the available range of
the corresponding flower parameter.

This architecture allows us to separate the flower generation from
the rendering, and is less demanding for low-power devices such
as mobile phones, since the flower generation is run on a sepa-
rate server. As an example, figure 4 shows the rendering of dif-
ferent flowers in an android device. Additionally, the web server
provides authentification, authorization and encryption, a possibly
useful feature in DRM schemes, and can hide the grammars from
the final users (if needed).

Figure 4: Procedural flowers rendered on Android.

3.2 Flower generation module

Flowers are modeled using an extension of L-Systems - a model
based on three-dimensional generalized maps. 3Gmap is an ordered
topological model that allows to represent the topology of subdivi-
sions of orientable or non-orientable 3D spaces, with or without
boundary. It is close to facet-edge data structure [Lienhardt 1994]
or cell tuple [D.Dobkin and Laszlo 1987], [Brisson 1989] . A sub-
division of a topological space is a partition of this space into cells
with dimensions 0, 1, 2, 3, i.e. into vertices, edges, faces, volumes.
This model is based on the use of a unique basic element - a dart -
on which four operators act. These operators are used to represent
adjacency relations between edges, faces and volumes. A combina-
tion of these basic elements allows to represent the topology of an
object, which corresponds to an unlimited number of embeddings
of this structure in three-dimensional space.

3Gmap L-systems are operated with volumes, which are mostly
regular prisms. In order to control each volume we use
a label, associated to it, which is a word in capital let-
ters. A prism GERM of order n is denoted as GERM (n).
Each face of a volume also has a label which is defined as
GERMO, GERM {E}, GERMC1 , GERMC2,...,GERMN for

Figure 5: 3Gmap L-System description.

Figure 6: 3Gmap L-System derivation steps.

the base, the end and the side faces of the prism GERM respec-
tively. A flower shape is created by operating on prisms. Following
production rules the volumes can grow, be glued and split. A short
description of topological operations on volumes is represented in
Figure 5.

• Growing: Creating a new volume and gluing it on one of the
faces of predecessor, called a support face. This operation is
denoted as: GERM → GERM [GERM(n)] {E}, where
E is the support face of the volume GERM and n is the degree
of the new volume GERM.

• Gluing:This operation glues two adjacent faces and is denoted
as follows: SPROUT → SPROUT̂C1|SPROUT̂C3,
where the faces C1 and C3 of volumes labeled SPROUT are
glued if they are adjacent.

• Splitting: This operation splits a volume into two parts and is
denoted SPROUT → ESPROUTASPROUTB, where
E is a face of volume SPROUTA. Here all faces adjacent to E
are split and the volumes, obtained with a face are closed.

All the information of the flower building blocks and the instruc-
tions used in the development of its final shape is stored in the
grammar. Using a grammar, we are operating recursively with dif-
ferent prisms and thus forming an appropriate shape.(Figure 6). The
grammar serves as a ”gene” which has an unlimited number of po-
tential embodiments. Once written a grammar we can change its
parameter values and get a diversity of flowers. The detailed de-
scription of 3Gmap L-system grammars is presented in [Petrenko
et al. 2012]. While applying 3Gmaps L-systems to the modeling
of flowering plants we have to follow natural laws, lying under-
neath their botanical structure. In order to depict the arrangement
of the lateral organs, according to the floral diagram we use the ini-
tial element as a short stem, the side faces of which serve as basis
for growing the sepals. On the end face there is another building
block which is the basis for growing petals and stamens on its side
faces.And finally on its end face there is a volume, on the top of
each grows carpel, or if there are more than one carpel, they will
grow on the side faces of this block (see Figure 7).



Figure 7: Floral diagram grammar.

Figure 8: Automatically generated flowerbeds. Top: using sun-
flowers and grass. Bottom: using tulips.

3.3 Content Generation

The content generation routines have been implemented as scripts
running in the Unity game engine, to provide support for the differ-
ent architectures it supports (Microsoft Windows, Mac OSX, An-
droid, iOS and Flash). The routines are portable, and are only con-
strained by the processing power and memory of the device (very
realistic flowers contain on the order of tens of thousands of trian-
gles, and a flowerbed contains many flowers).

The flowerbed generator code fills a terrain by choosing flower lo-
cations using stratified sampling (figure 10; flowers are more sparse

Figure 9: Top: A single bluebell. Bottom: geraniums

to highlight the sampling). The number of flowers, their species
and density are parameters to the script. In addition, a range of
possible values for the grammar parameters can be given (or a de-
fault will be used). The script samples stochastically the parameter
space, generates a url, and requests each flower, until the flowerbed
is filled. Different flowerbed scripts can be used to interspace differ-
ent species of flowers or to add grass (figure 8). Additionally, dif-
ferent flowers can be interespaced in the same flowerbed by choos-
ing randomly among a predefined set of flowers. Figure 11 shows
a flowerbed with interspaced bluebells and daisies integrated in a
game being developed at the group based on the Windmill adven-
ture of Don Quixote [de Cervantes 1605]. An example of a real-
world flowerbed can be seen in figure 12 for comparison purposes;
we can see the tangling of the flowers is well preserved in our dense
flowerbeds.



Figure 10: Top view of a sparse flowerbed.

Figure 11: Bluebells and daisies in the Don Quixote game.

Figure 12: Photograph of a natural flowerbed.

3.4 Exploring the parameter space using Kinect

Figure 13: Photograph of a real flower

Flowers are complex objects (figure 13), and procedural modelling
of them requires attention to many parameters. Classical interfaces
based on keyboard and mouse require the display of a multitude of
parameters and nested menus. However, newer, camera-based input
devices such as Microsoft Kinect allow the user to use a much richer
collection of gestures using different parts of the body to indicate
their wishes.

Figure 14: Controling the flower shape with Kinect gestures.

Specific gestures can be designed and mapped to different parame-
ters of the flower grammar, obtaining very intuitive modelling ges-
tures (Figure 14). As an example, we have modelled the horizontal
and vertical movement of the right hand to the rotation and length
of the stem of the flower, respectively. When we display a circle
indicating the position of the current parameters, we observe an in-
teresting emerging behaviour: the flower grows and bends towards
the circle, in a manner reminiscent of the known biological concept
of phototropism [Whippo and Hangarter 2006] (Figure 15). We be-
lieve that this emerging behaviour provides an intuitive control for
modellers and biologists.

Formally, the Kinect gesture for hand position provides two axes
(vertical and horizontal position of the hand), which range in values



between 0 and 1. By contrast, the rotation parameter of the flower
is in degrees (which ranges for realistic flowers between −5 ◦ and
+5 ◦) and the length parameter ranges between 0 and 100. Two
linear transforms connect the values of the kinect axes to the flower
parameters. The vertical axis is linked to the length of the flower by
transforming the interval [0, 1] to [100, 0] as the screen coordinates
grow down. The horizontal axes is linked to the angle parameter by
transforming [0, 1] to [−5, 5].

We can also use Kinect to delete flowers if the flowerbed is too
dense. The Kinect cursor can select a flower for deletion by pushing
the hand forward (figure 16).

Figure 15: Different screenshots of a daisy in which the length and
rotation parameters are controlled using Kinect gestures. The red
circle indicates the horizontal and vertical position of the user’s
hand. The movement resembles phototropism.

4 Conclusions and Future work

We have shown how unique, realistic grass and flowers can be
generated by L-Systems, and described a framework to model
them using a natural interface (Microsoft Kinect), and to gener-
ate flowerbeds in the Unity game engine. These flowerbeds can be
integrated in videogames very easily.

We plan to integrate the procedural flowerbed generator in the Leg-
ends of Girona game [Rodrı́guez et al. 2013] to provide more real-
istic rendering of the fields outside of the city, and to validate the
software in real-world scenarios.

The current bottleneck of the system is the load of the flower mod-
els, which is sent using the OBJ format (we are currently loading the
models using a library based on Bartek Drozdz’s Objloader [Drozdz
2010]). To alleviate this bottleneck, we will search for efficient im-

Figure 16: Deletion of flowers using a Kinect push gesture.

plementations of 3D model loaders for Unity and integrate them in
our framework.

As further future work, we plan to add more realistic materials to
the flower models and to perform a user study to compare the tra-
ditional mouse interface for flower modelling to our Kinect-based
gesture interface.
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Appendices

The following appendices contain the grammars used to generate
the daisies, sunflowers and herbs shown in section 3.

The grammar of the grass consists of a one building block HB, to
which a growing operation is applied sequentially and its final shape
is sculptured with parameters modifying the grass rotation and cur-
vature and the the height and the width of the leaf. The daisy and
the sunflower are constructed according to the floral diagram. We
use a building block STEM both for the daisy and for the sunflower
grammars. The STEM building blocks of the sunflower stem are
interfered with STEML, STEMLL and STEMLLL building blocks.
These are the bases for the sunflower leafs, which will grow from
the side faces.
STEML→ STEML[LEAF (, 0, 0, , 0, , , , )]C1

STEMLL→ STEMLL[LEAF (, 0, 0, , 0, , , , )]C5

STEMLLL→ STEMLLL[LEAF (, 0, 0, , 0, , , , )]C9

On the last building block of the stem we grow the receptacle of the
daisy and the sunflower using a RECEPT building block. It is colo-
cated on the side faces of the top of the stem and grows the sepals.
Daisies and sunflowers have circular flowerheads which are repre-
sented in the grammars as CENTRE building block for the daisy
and SPIRAL module foe the sunflower. Petals grow from the side
faces of the top of the stem using the modules PETAL and PTSF
for daisy and sunflower accordingly.

A Daisy grammar

#define STEM(14, 2, 0, 5, 5, 2, 2, 2, 4)
#define CENTRE(14, 1, 0, 0, 0, 1, 1, 1, 3)
#define COL(14, 1, 0, 0, 0, 1, 1, 1, 3)
#define UREC(18, 1, 0, 0, 0, 1, 1, 1, 4)
#define LREC(14, 1, 0, 0, 0, 1, 1, 0.008, 4)
#define SPONGY (4, 1, 0, 0, 0, 1, 1, 1, 3)
#define PALISADE(4, 1, 0, 0, 0, 1, 1, 1, 3)
#define CUTICLE(4, 1, 0, 0, 0, 1, 1, 1, 3)

#axiome : STEM

STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [LREC(, , , , , , , , )] {E}
LREC → LREC[UREC(, , , , , 5, , )] {E}
UREC → UREC[CENTRE(, , , , , 5, , , )] {E}
CENTRE → CENTRE[CENTRE(, , , , , 5, , , )] {E}
CENTRE → CENTRE[CENTRE(, , , , , 5, , , )] {E}
CENTRE → CENTRE[COL(, , , , , , , , )] {E}
CENTRE → CENTRE[SPONGY (, , , , , , , , )]C∗
LREC → LREC[&RECEPT (4, 0.1, 0, 0, 0, 1, 0.1, 0.002, 4)] {C∗}
UREC → UREC[&PETALDAISY Y (4, 0.1, 0, 0, 0, 1, 0.1,
0.2, 9)] {C∗}
SPONGY → SPONGY Ĉ2|SPONGY Ĉ4
SPONGY → SPONGY Ĉ1|SPONGY Ĉ3
PALISADE → PALISADÊC2|PALISADÊC4
PALISADE → PALISADÊC1|PALISADÊC3
CUTICLE → CUTICLÊC2|CUTICLÊC4
CUTICLE → CUTICLÊC1|CUTICLÊC3

http://www.xbox.com/en-US/KINECT
http://www.xbox.com/en-US/KINECT
http://www. openni.org/files/zdk-for-unity3d
http://www. openni.org/files/zdk-for-unity3d


B Sunflower grammar

#define STEM(16, 0, 0.1, 0, 0, 3, 1.1, 1.1, 4)
#define STEMS(16, 0, 0.1, 0, 0, 3, 1.1, 1.1, 4)
#define STEMM(16, 0, 0, 0, 0, 3, 1.1, 1.1, 4)
#define STEML(16, 0, 0.1, 0, 0, 3, 1.1, 1.1, 4)
#define STEMLL(16, 0, 0.1, 0, 0, 3, 1.1, 1.1, 4)
#define STEMLLL(16, 0, 0.1, 0, 0, 3, 1.1, 1.1, 4)
#define CENTER(8, 0, 0, 0, 0, 2, 0.5, 0.5, 2)
#define RECEPT (8, 0, 0.1, 0, 0, 0.1, 1.1, 1.1, 4)
#define RECEPTSF (8, 0, 0.1, 0, 0, 0.1, 1.1, 1.1, 4)
#define SFR(8, 0, 0.1, 0, 0, 0.1, 1.1, 1.1, 3)
#define RSF (8, 0, 0.1, 0, 0, 0.1, 1.1, 1.1, 3)
#define LEAF (4, 1, 0, 0, 0, 0.2, 0.1, 0.1, 4)
#define SEPAL(4, 1, 0, 0, 0, 0.2, 0.1, 0.1, 4)
#define PT (4, 1, 0, 0, 0, 0.2, 0.1, 0.1, 3)

#define x = 0.006
#define ko = 16
#define s = 0.8
#define angle = 0.984
#define ang = 13.02

#axiome : STEM

STEM → STEM [STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEML(, , , , , rnd(1, 5), , , )] {E}
STEML→ STEML[STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEM(, , , , , rnd(1, 5), , , )] {E}
STEM → STEM [STEMLL(, , , , , rnd(1, 5), , , )] {E}
STEMLL→ STEMLL[STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, , , , , , , , )] {E}
STEM → STEM [STEM(, 0, 0, , 0, , , , )] {E}
STEM → STEM [STEMLLL(, 0, 0, , 0, , , , )] {E}
STEMLLL→ STEMLLL[STEMS(, 0, 0, , 0, , , , )] {E}
STEMS → STEMS[STEMS(, 0, 0, , 0, , , , )] {E}
STEMS → STEMS[STEMS(, 0, 0, 0, 0, 0.3, , , )] {E}
STEMS → STEMS[STEMM(16, , , , 0, 0.5, 8.8, 4)] {E}
STEMM → STEMM [STEMS(16, , , , 0, 0.5, 7, 7, 4)] {E}
STEMS → STEMS[RECEPT (26, , , , , 0.5, 5, 5, 4)] {E}
RECEPT → RECEPT [RECEPT (16, , , , , 0.1, 4.5, 4.5, 4)] {E}
RECEPT → RECEPT [RECEPTSF (16, , , , , 0.1, 6, 6, 4)] {E}
RECEPTSF → RECEPTSF [RECEPTSF (26, , , , , 0.1, 5, 5, 4)] {E}
RECEPTSF → RECEPTSF [SFR(26, , , , , 0.1, 5, 5, 3)] {E}
SFR→ SFR[RSF (16, , , , , 0.9, 4.5, 4.5, 3)] {E}
RSF → RSF [STEMS(12, , , , 0, 0.2, 1.5, 1.5, 3)] {E}
STEMS → STEMS[STEMS(8, , , , , 0.2, 0.5, 0.5, 3)] {E}
STEMS → STEMS[STEMS(8, , , , , 0.2, 0.5, 0.5, 3)] {E}
STEMS → STEMS[&SPIRAL(8, 0, 0, 90, 0,math.sqrt(pow((s+
etape) ∗ x ∗ (1 + ko ∗ etape), 2) + pow((s + etape) ∗ x ∗ (2 +
ko ∗ etape), 2) − 2 ∗ (s + etape) ∗ x ∗ (1 + ko ∗ etape) ∗ (s +
etape) ∗ x ∗ (2 + ko ∗ etape) ∗ angle), 0, 0, 8)] {E}
RECEPT → RECEPT [SEPAL(4, 1, , , , 0.2, 0.1, 0.1, 4)]C∗
SFR→ SFR[PT (4, 1, , , , 0.9, 0.1, 0.1, 3)]C∗
RSF → RSF [PT (4, 1, , rnd(3, 9), rnd(3, 9), 2, 0.1, 0.1, 3)]C∗
STEML→ STEML[LEAF (, 0, 0, , 0, , , , )]C1

STEMLL→ STEMLL[LEAF (, 0, 0, , 0, , , , )]C5

STEMLLL→ STEMLLL[LEAF (, 0, 0, , 0, , , , )]C9

LEAF → LEAF [LEAF (4, 1, , , 0, 0.5, 0.1, 0.1, 4)] {E}
LEAF → LEAF [LEAF (4, 1, , , , 0.5, 0.1, 0.1, 4)] {E}
LEAF → LEAF [LEAF (4, 1, , , , 0.5, 0.1, 0.1, 4)] {E}
LEAF → LEAF [&LEAFSF (16, 1, , , 0, 1, 0.1, 0.1, 13)] {E}

SEPAL→ SEPAL[&SEPALSF (16, 1, , , 0, 0.5, 0.1, 0.1, 13)] {E}
PT → PT [&PTSF (16, 1, , , 0, 1, 0.1, 0.1, 3)] {E}
SEPAL→ (SEPAL)

C Herb grammar

#define HERB(16, 1, 0, 0, 0, 0.5, 2.5, 0.2, 4)

#axiome : HERB

p01HERB → HERB[HERB(16, 1, , 〈math.random(−18, 15)〉,
〈math.random(−18, 15)〉, 3, 2, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 1.8, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 1.5, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−18, 15)〉,
〈math.random(−18, 15)〉, 3, 1.3, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 1, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 0.8, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 0.6, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 3, 0.4, 0.2, )] {E} p01 HERB →
HERB[HERB(16, 1, , 〈math.random(−15, 15)〉,
〈math.random(−18, 15)〉, 2, 0.2, 0.2, )] {E}


